p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42⋊6C4, C4.1C42, M4(2)⋊2C4, C23.32D4, C4⋊C4⋊3C4, C2.3C4≀C2, C4.2(C4⋊C4), (C2×C4).11Q8, (C2×C4).141D4, (C2×C42).6C2, C22.3(C4⋊C4), C4.27(C22⋊C4), C42⋊C2.2C2, (C2×M4(2)).6C2, C22.24(C22⋊C4), C2.4(C2.C42), (C22×C4).101C22, (C2×C4).63(C2×C4), SmallGroup(64,20)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊6C4
G = < a,b,c | a4=b4=c4=1, cac-1=ab=ba, cbc-1=b-1 >
Character table of C42⋊6C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | -i | -i | -1 | 1 | i | i | i | i | i | -i | -i | i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | i | i | -1 | 1 | -i | -i | -i | -i | i | -i | -i | i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | -i | -i | -1 | 1 | i | i | i | i | -i | i | i | -i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | i | i | -1 | 1 | -i | -i | -i | -i | -i | i | i | -i | 1 | -1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | 1 | 1 | i | i | -i | -i | 1 | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | 1 | 1 | -i | -i | i | i | 1 | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | 1 | 1 | -i | -i | i | i | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | 1 | 1 | i | i | -i | -i | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 1-i | -1+i | -1-i | 1+i | 0 | 0 | -1+i | 1-i | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | -1+i | 1-i | -1-i | 1+i | 0 | 0 | -1+i | 1-i | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 1+i | -1-i | -1+i | 1-i | 0 | 0 | -1-i | 1+i | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | -1-i | 1+i | -1+i | 1-i | 0 | 0 | -1-i | 1+i | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | -1-i | 1+i | 1-i | -1+i | 0 | 0 | 1+i | -1-i | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 1+i | -1-i | 1-i | -1+i | 0 | 0 | 1+i | -1-i | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 1-i | -1+i | 1+i | -1-i | 0 | 0 | 1-i | -1+i | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | -1+i | 1-i | 1+i | -1-i | 0 | 0 | 1-i | -1+i | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 4 7 5)(2 3 8 6)(9 15 11 13)(10 16 12 14)
(1 9 8 14)(2 16 7 11)(3 10 5 15)(4 13 6 12)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,5)(2,3,8,6)(9,15,11,13)(10,16,12,14), (1,9,8,14)(2,16,7,11)(3,10,5,15)(4,13,6,12)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4,7,5)(2,3,8,6)(9,15,11,13)(10,16,12,14), (1,9,8,14)(2,16,7,11)(3,10,5,15)(4,13,6,12) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,4,7,5),(2,3,8,6),(9,15,11,13),(10,16,12,14)], [(1,9,8,14),(2,16,7,11),(3,10,5,15),(4,13,6,12)]])
G:=TransitiveGroup(16,121);
C42⋊6C4 is a maximal subgroup of
C24.63D4 C4×C4≀C2 D4.C42 Q8.C42 D4.3C42 C42.102D4 C24.70D4 (C2×C42)⋊C4 C8⋊C4⋊17C4 C24.21D4 C4.10D4⋊2C4 C4≀C2⋊C4 C42⋊9(C2×C4) M4(2).41D4 M4(2).42D4 C24.72D4 C8.C22⋊C4 C8⋊C22⋊C4 M4(2)⋊19D4 C24.23D4 C4⋊Q8⋊15C4 C24.24D4 C4.4D4⋊13C4 (C2×C4)≀C2 C42⋊7D4 C42.426D4 M4(2).3Q8 M4(2).24D4 C42.427D4 C42.428D4 C42.107D4 C42.62Q8 C42.28Q8 M4(2)⋊7Q8 C42⋊16Q8 C42⋊Q8 C42⋊9D4 C42.129D4 C42⋊10D4 C42.130D4 (C2×D4)⋊2Q8 (C2×Q8)⋊2Q8 C42.8D4 M4(2)⋊6D4 M4(2).7D4 M4(2)⋊Q8 C42⋊3Q8 C42.32Q8 C23.9S4
C4p.C42: C8.14C42 C8.5C42 C12.8C42 C12.2C42 C12.3C42 C42⋊6Dic5 C20.32C42 C20.33C42 ...
C42⋊6C4 is a maximal quotient of
C42.46Q8 C24.46D4 C42.6Q8 C42.7Q8 C24.48D4 C42⋊6F5 M4(2)⋊3F5
C23.D4p: C23.30D8 C12.3C42 C20.33C42 C28.3C42 ...
C2p.C4≀C2: C42⋊6C8 M4(2)⋊C8 C42.4Q8 C42.26D4 C42.388D4 C42.9Q8 C42.370D4 C42.10Q8 ...
Matrix representation of C42⋊6C4 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 4 |
1 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 13 |
13 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(17))| [1,0,0,0,1,0,0,0,4],[1,0,0,0,4,0,0,0,13],[13,0,0,0,0,1,0,1,0] >;
C42⋊6C4 in GAP, Magma, Sage, TeX
C_4^2\rtimes_6C_4
% in TeX
G:=Group("C4^2:6C4");
// GroupNames label
G:=SmallGroup(64,20);
// by ID
G=gap.SmallGroup(64,20);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,650,158,1444]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^4=1,c*a*c^-1=a*b=b*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊6C4 in TeX
Character table of C42⋊6C4 in TeX